Phase I/IIa clinical study demonstrated BKT140, a novel CXCR4 antagonist, as a powerful human stem cell mobilizer with the capacity to induce MM apoptotic cell death in patients with myeloma. (EMBT Updated abstract 9 2011)

Arnon Nagler,1 Avichai Shimoni,1 Irit Avivi,1 Jacob M. Rowe,2 Katia Beider,1 Izhar Hardan,1 Michal Abraham,4 Hanna Wald,4 Eithan Galun,3 Howard Laurence Shaw,4 Orly Eizenberg4 and Amnon Peled3,4

1Hematology Division and BMT, Chaim Sheba Medical Center and Tel Aviv University, Tel-Hashomer, Israel. 2Department of Hematology and Bone Marrow Transplantation, Rambam Medical Center and Technion, Israel Institute of Technology, Haifa, Israel.3Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, P.O.B 12000, Jerusalem 91120 Israel.
4Biokine Therapeutics Ltd., Science Park, Ness Ziona, Israel.

Background: BKT140 is a highly selective CXCR4 antagonist, with high affinity (1-2nM) and an extended Koff-rate. Pre-clinical studies in animal models with BKT140 showed a robust mobilization of hematopoietic stem cells. Furthermore, BKT140 also showed a direct anti-tumor effect against human-derived multiple myeloma (MM), cells in vitro and in vivo. We here report for the first time the preliminary results of a first in-human clinical study with BKT140 in MM patients.

Study design: 18 MM patients in first CR/PR and after induction chemotherapy that required stem cell collection for aHSCT were included in this Phase I/IIa study. Escalating doses of BKT140 (6 (n=2) 30 (n=4), 100(n=4), 300(n=4) and 900(n=4) µg/kg) were administered in a chemo-based mobilization of a single dose cyclophosphamide (Cy) (3-4 g/m²) and granulocyte colony-stimulating factor (G-CSF) 5 µg/Kg for stem cell mobilization. G-CSF was self administered daily in the evenings as of Day 5 post Cy until end of stem cells collection and BKT140 was injected subcutaneously (SC) once on Day 10.

Results: BKT140 was well tolerated at all the tested doses (30-900 µg/kg), and none of the patients developed grade II-IV toxicity. BKT140 was rapidly absorbed with no observed lag time, with peak plasma concentrations occurring 0.5h after administration. Clearance was rapid, with a median terminal half-life of 0.3-0.7h at 300 and 900 µg/kg respectively.

BKT140 administration resulted in a significant dose-dependent increase in the number of peripheral blood WBC, neutrophils, monocytes, lymphocytes, and CD34+ cells compared to the G-CSF/Cy individual patient baseline.

BKT140 administration resulted in a significant increase in the mean absolute PB CD34+ cells collected at the first aphaeresis following administration of BKT140. At the highest dose, the average number of CD34+ cells collected following one injection of BKT140 was 20 million per
kg, which is double the average number of CD34+ cells obtained with the use of G-CSF plus plerixafor for PBSCT practice.

Moreover, the number of aphaeresis was reduced from 2.0 (n=4) and 2.25(n=4) procedures at the first two BKT140 doses to 1.25 (n=4) and 1 (n=4) aphaeresis at the highest BKT140 doses, respectively.

Increase in the number of CD138+ cells was observed in pts that had CD138+ cells in their blood and were treated with lower doses of BKT140 (30 and 100 µg/Kg). Interestingly, in pts that were treated with the highest doses of BKT140 (300 and 900 µg/kg) a reduced number of CD138+ cells was observed in 3 out of 7 pts that had CD138+ cells in their blood.

The BKT140 mobilized grafts were used for AutoSCT following 200 mg/m² melphalan conditioning. Pts received an average of 5.3x10⁶ CD34+ cells/kg. All transplanted pts were rapidly engrafted (n=17).

The median day for neutrophil recovery (>500/mm3) was 12 days, with a range for all doses of 11-14 days. A dose dependent reduction time to platelet recovery was observed both when 20,000 platelets or 50,000 platelets were counted. The median day for platelets (>20,000/mm3) was 14.5, 12.5, 13, 12, 11 days with a range of 10-19, 12-14, 12-13, 12, 0-13 respectively. The median day for platelets (>50,000/mm3) was 20, 17, 14, 14, 14 days with a range of 14-26, 14-20, 11-15, 12-19, 12-16 respectively.

Conclusion: BKT140 was safely added to G-CSF/Cy -based SC mobilization regimen, it rapidly and consistently increased CD34+ cell mobilization and significantly and dose dependently reduced the number of aphaeresis collection days. Additional studies are warranted to further evaluate the effect of BKT140 as a mobilizing agent and an anti-cancer agent.